讲历史,看历史知识,尽在讲历史网

​人造甜味剂,真的可以吃么?| 地球知识局

来源: 2022-11-22 15:31:00 人气:
字号: 小号| 大号
【内容导读】地球知识局微信公众号:地球知识局据说地球人民都关注分享我局了(⊙v⊙)NO.2316-什么是甜味剂作者:筋斗云校稿:朝乾 / 编辑:板栗在酸、甜、苦、咸四种基本味中,甜味可以说是人类最喜欢的味觉刺激。长期以来,人们一直通过摄入糖

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

地球知识局微信公众号:地球知识局

据说地球人民都关注分享我局了(⊙v⊙)

NO.2316-什么是甜味剂

作者:筋斗云

校稿:朝乾 / 编辑:板栗

在酸、甜、苦、咸四种基本味中,甜味可以说是人类最喜欢的味觉刺激。长期以来,人们一直通过摄入糖分来品尝甜味。可是,过量摄入糖分,可能导致糖尿病等一系列健康问题。于是,人类发明了一系列甜味剂来代替糖。

很早以前人们就已经认识到了甜味剂的“美妙”

(1900 雷姆·弗里茨)

(图:wiki)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

我们在品尝糖或其他甜味剂时,为何带给我们的甜甜的味觉体验呢?事实上,甜味是甜味剂甜受体之间以一种特殊方式相互作用的结果。

其实我们品尝到甜味的这个过程十分复杂

(参考:wiki)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

要解释甜味的产生,需要涉及到甜味剂、甜受体的化学结构和生理基础,甜味剂与甜受体的相互作用机理。

与甜味有关的理论与甜味有关的理论

与甜味有关的理论

有关感受味觉受体的生理基础中,“舌头味觉分布图”是一个广为流传的说法,即舌头上感受酸、甜、苦、咸的受体位于不同的区域,舌尖对甜味最敏感,舌根对苦味最敏感,舌的两边则对咸味和酸味最敏感。

现在被广泛承认的味道除了酸、甜、苦、咸,还多了鲜味

(参考:shutterstock)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

但实际上,这个说法是错误的。这一“舌头味觉分布”起源于20世纪初发表的一篇德国论文的误译。德国科学家大卫·哈尼格(David Pauli Hänig)发现,舌头周围的四种基本口味(酸、甜、苦、咸)的阈值有微小的差异。

其实每一个味蕾都能尝到五种味道,只是敏感度有差异

(味蕾 参考:shutterstock)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

多年后,美国心理学家埃德温·波林(Edwin Garrigues Boring)重新查看了哈尼格的数据,但他绘制了阈值的倒数(即1/阈值)作为敏感性的度量。结果显示,舌尖对甜味的敏感度最大,舌根对苦味的敏感度最大。而且波林没有在他的图上标注纵坐标,这让人们没有意识到,图中显示的敏感性差异其实非常小

单看埃德温·波林的图确实很有误导性

(图:Edwin Garrigues Boring)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

后来学者重复了哈尼格阈值的测定部分并进行了扩展

绘制出来阈值的对数作为敏感性的度量的新图表

可以看到对不同味觉的感知差异不显著

(图:Virginia B. Collings)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

最终,人们误将这细微的敏感性差异解释为没有感觉,于是“舌头味觉分布图”就诞生了。现代数据证实,在有味蕾的地方,所有四种味觉都能被感知到。

甜味剂的结构最广泛接受的理论是AH-B理论。早在20世纪60年代,科学家提出,甜味产生的原因是甜味分子AH-B系统与甜受体的AH-B系统进行氢键结合,形成双氢键复合结构而产生甜味刺激。

AH-B理论模型

(图:Shallenberger R. & Acree)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

后来的甜味剂的结构理论多是建立在AH-B理论的基础上,如著名的多点结合甜味理论。

多点结合甜味理论认为,人体甜味蛋白受体最少包含8个基本的识别部位,这些识别部位与甜味分子相应的结合部位发生相互作用,从而产生甜味刺激。甜味剂-甜受体相互作用理论的产生,促进了甜味剂的发展。

甜味剂分子与蛋白质受体拟合得越好

相互作用越大,甜味刺激越大

(味觉受体与葡萄糖 图:wiki)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

自20世纪60年代发现阿斯巴甜以来,已经有大量的甜味剂已经被研发。

甜味剂的分类方法有很多:根据来源,甜味剂可以被划分为“天然甜味剂”和“人工甜味剂”;根据可提供的热量,甜味剂可分为“营养型甜味剂”和“非营养型甜味剂”。

人工合成的甜味剂由于甜度高,添加量极少

所以几乎都是非营养型的▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

蔗糖属于营养型甜味剂,现在常用的替代蔗糖的甜味剂(代糖)有糖醇、高效甜味剂等。高效甜味剂多是人工甜味剂,也被认为是非营养型甜味剂,如糖精、三氯蔗糖和阿斯巴甜等。

这些甜味剂比蔗糖、玉米糖浆和果汁等高热量的甜味剂有更高的甜味,可在非常低的浓度下激活甜受体,因此添加量较少,几乎不提供热量。

阿斯巴甜比一般的糖甜约200倍,常用在无糖饮料中

与它相似的纽甜则常用在麦片中

(图:wiki)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

糖醇类甜味剂大多是天然甜味剂,如赤藓糖醇、木糖醇、甘露糖醇等。糖醇类甜味剂的甜度没有那么高,如赤藓糖醇的甜度为蔗糖的0.6~0.8,木糖醇的甜味也不过是和蔗糖等同。

但是,糖醇类在热量上的表现是有区别的,如赤藓糖醇被认为是0kcal/g,木糖醇为2.5~3kcal/g(蔗糖一般为4kcal/g),算是一种低热量的甜味剂。

但由于糖醇甜度不高,添加量较大

其带来的热量还是不能算太低

(参考:wiki)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

利用成分来改善食品的营养状况是食品行业新产品研发的主要驱动力之一,这也为人们开发新的健康食品提供了新方向。食品企业在研发的新产品中贴上了“无糖”“不添加糖”“低热量/零卡”等标签,以吸引人们购买。

无糖食品是否真的那么健康呢

(图:flickr)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

目前,许多食物中含有代糖,包括饮料、冰淇淋、酸奶、口香糖、巧克力、果酱和巧克力。而关于代糖对身体健康的优缺点一直有很多争论。

代糖的争议代糖的争议

代糖的争议

目前,关于代糖优点的讨论多集中于糖醇类甜味剂。

一些糖醇类甜味剂对口腔健康是有益处的,这一点已经得到了广泛的认可。口腔微生物不能发酵这些化合物,不会导致酸性的口腔环境,因此不利于牙菌斑和龋齿产生。

很多口香糖中就添加了木糖醇

(图:flickr)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

糖醇类甜味剂的特点是低血糖反应和低胰岛素反应,它们还与脂肪生成抑制和降低胰岛素生成有关。因此,糖尿病患者可以食用含有糖醇的产品。

一些糖醇对肠道健康也是有益处的,有利于对胃肠道菌群生长。糖醇在肠道中发酵产生的丁酸,是肠黏膜的能量来源,也被认为会减缓癌细胞的生长。

肠道其实是人体最大的免疫器官

(小肠绒毛横截面 图:wiki)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

而关于代糖缺点的讨论大多是关于人工甜味剂。

目前,人们大摄入含人工甜味剂最多的食品是软饮料。虽然人工甜味剂的热量很低,但是研究表明,人工甜味剂在生理上并不是惰性的。其可能通过不同的外周和中枢机制影响进食和代谢。

应该不只有我一个人不喝白水只喝“甜水”吧

(你是否也“甜水”上瘾了呢 图:图虫创意)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

一些研究表明,长期人工甜味剂摄入与体重增加、代谢综合征和Ⅱ型糖尿病之间呈正相关关系。

人工甜味剂对肠道微生物群也有一定的影响。人类和啮齿动物的肠道微生物群优势和共生细菌门,只有厚壁菌门、拟杆菌门、放线菌门和变形菌门。这些肠道微生物群影响宿主的重要生理功能,特别是免疫系统和膳食营养物质的代谢。

动物研究表明,由糖精、三氯蔗糖和阿斯巴甜组成的人造甜味剂会改变肠道微生物群。食用三氯蔗糖和营养性甜味剂的混合物,减少了共生细菌的数量。这些肠道微生物群的变化与在Ⅱ型糖尿病患者、肥胖个体中的发现是一致的。

还能不能快乐了

(图:shutterstock)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

因此科学家认为,人工甜味剂引起的这些变化也可能与胰岛素抵抗、肥胖等疾病有关。如果持续摄入人工甜味剂,就会影响肠道微生物群的组成,可能导致一些不良影响

当然,大量研究主要是在动物模型中进行的,动物研究的发现很难推断到人类身上。关于这些发现,在与人类有关的试验中还没有足够的证据。

我的快乐又回来了?

(图:flickr)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

事实上,糖醇类甜味剂也会产生一些人体不适应的情况。

糖醇类甜味剂低热量的原因是其消化吸收慢或不完全吸收。它们通过被动扩散被吸收,并且它们在小肠中的摄取速率随着其分子质量的增加而减少,因此会升高肠道内的渗透压,使肠道细胞内的水分因外部高渗透压而渗出。

这些多余的水分就会导致大便变稀,形成渗透性腹泻。这种腹泻方式和乳糖不耐受产生的腹泻是类似的。

许多月饼中就有使用糖醇

肠胃不好的人吃多了容易窜稀

(图:图虫创意)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

快乐都是嘴巴的,肠道只能默默承受快乐的“副作用”

(研究糖醇导致腹泻的动物实验图:shutterstock)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

有些糖醇如甘露醇,可在肠道中发酵,会导致胀气。这些腹泻和胀气等情况取决于一个人的耐受性,人们可以通过定期食用来提高耐受性。

代糖在食品工业的应用代糖在食品工业的应用

代糖在食品工业的应用

每一种食品成分的应用,都要考虑他们的安全性、生产特性和口味。现在,糖醇类甜味剂已经成为了代糖应用方面的宠儿,尤其是赤藓糖醇。

赤藓糖醇甜度不低且热量几乎为零

算得上糖醇里的佼佼者了

(图:wiki)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

赤藓糖醇在小肠内的吸收率较高。而且,赤藓糖醇不在肠道中发酵,可在24小时内完整地通过尿液排出,也就不会有腹泻情况的发生。

糖醇不只是赋予食品的甜味,其渗透性、体积、吸水性、结晶性等均在食品加工中有所应用。另外,其在口感上还会带来一种清凉的感觉。

牙膏和化妆品里也有赤藓糖醇的身影

(图:flickr)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

与人工甜味剂不同,所有的糖醇都可以在体积上以1:1的比例替代糖或果葡糖浆。糖醇的吸水性使其有多种应用。

例如,山梨醇或木糖醇可以帮助保持水分;而甘露醇具有很低的吸湿性,可以作为口香糖的除尘粉,防止口香糖粘在工业设备和包装纸上;山梨醇等可溶性糖醇可防止结晶,会增加产品的光滑度,多用于糖浆和果酱中。

身兼多职的糖醇可以说是甜味剂里的多面手了

(图:壹图网)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

糖醇在较大范围的温度和pH内是稳定的,且不会发生焦糖化或发生美拉德反应,可用于不希望产生变色反应的产品上,并提高产品的保质期。

能烤出焦黄得恰到好处的面包的方法找到了

(图:flickr)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

有人总结认为,糖醇类甜味剂大概只有两个缺点:引起腹泻,价格昂贵。

除去营养、安全、加工特性等方面,到目前为止,人们尚未发现一种在口味上能够完全取代蔗糖的甜味剂。

谁能拒绝这一口红糖糍粑呢

(图:图虫创意)▼

人造甜味剂,真的可以吃么?| 地球知识局人造甜味剂,真的可以吃么?| 地球知识局

应用型学科的发展要建立在基础学科之上。想要有更多甜味剂的发现和应用,还是要回到前文提到的甜味剂和甜受体相互作用的理论,要等到弄清楚甜受体蛋白质分子的结构才可以。

一个题外话,对于我个人来说,就喝不惯代糖的饮料,感觉有一种明显的后甜味,口感上也差一些。不过有的人好像感受不出代糖饮料和蔗糖饮料口感上的区别。不知各位读者对此感受是如何?

参考资料:

[1]LYN O’BRIEN.Alternative Sweeteners,Fourth Edition[M].Winnipeg:CRC Press,2011.

[2]JM MERILLON,RAMAWAT K G.Sweeteners Pharmacology,Biotechnology,and Applications:Pharmacology,Biotechnology,and Applications[M].Cham:Springer International Publishing,2018.

[3]WEERASINGHE D K,DUBOIS G E.Sweetness and sweeteners:biology,chemistry,and psychophysics[M].Georgia:American Chemical Society,2008.

[4]郑建仙. 高效甜味剂[M].北京:中国轻工业出版社,2009.

[5]O’DONNELL K,KEARSLRY M W.Sweeteners and sugar alternatives in food technology[M]. Chichester:John Wiley & Sons,Ltd.,2012.

*本文内容为作者提供,不代表地球知识局立场

封面:shutterstock

  • 湘西南芙蓉里到芙蓉村的历史演变

    洪武十四年(1381年)朱元璋下令在全国推行里甲制度,“命天下郡县编赋役黄册,其法以一百一十户为里,一里之中推丁粮多者十人为之长,余百户为十甲,甲凡十人,岁役里长一人,甲首十人管摄一里之事。”由这段话可以看出,里以自然村为基本单位,属于明王详情>>

    2023-10-23
  • 长征中毛泽东挽救仅剩三万红军的重要会议

    背景: 中央红军从湘江战役突围后,8.6万红军仅剩不足3万人。与湘西红二六军团会合的原计划被敌人识破,在去湘西的路上布下天罗地网,正等着红军去钻口袋。红军进入湖南后截获敌人电报,知道敌人在靖县,会同,绥宁北部等地布下三、四十万重兵,情况万分详情>>

    2023-10-21
  • 中国现在,非常缺铀!| 地球知识局

    地球知识局微信公众号:地球知识局据说地球人民都关注分享我局了(⊙v⊙)NO.2470-中国缺铀文字:伯玥校稿:朝乾 / 编辑:苦果1905年,爱因斯坦提出了质能方程式。其中c指的是光速,一个很大的数,而且是平方,即使小学生也能详情>>

    2023-10-16
  • 中国打通了日本海出海口?| 地球知识局

    地球知识局微信公众号:地球知识局据说地球人民都关注分享我局了(⊙v⊙)NO.2469-吉林有了出海口?文字:刁像校稿:朝乾 / 编辑:澄澈【致谢】特别感谢从事外贸领域的金老师对本文的帮助2023年5月4日,海关总署发布《关于进详情>>

    2023-10-16
  • 印度270多架苏30战机,急需升级,对比歼16到底如何?

    在之前的文章中,作者和大家聊了一系列关于我国歼16战机各方面的故事,例如歼16战机的定位和综合性能。今天,我们聊聊印度的苏30战机。印度拥有270多架苏30战机,属于印度的绝对主力战机。目前,大部分苏30战机已经进入了服役中后期,急需进行详情>>

    2023-10-16
  • 黑龙江省的飞地,大兴安岭的行署,为何设立在内蒙古境内?

    在之前的文章中,作者和大家聊了一系列关于我国黑龙江省各个城市区划变迁和经济发展的故事,例如哈尔滨市、绥化市等等。今天,我们聊聊黑龙江省的大兴安岭地区。大兴安岭地区非常特殊,地区行署机关在加格达奇区。但是,加格达奇区设立在内蒙古自治区境内。详情>>

    2023-10-16
  • 宣纸:108道工序造就的纸中之王

    作为中国传统手工纸的杰出代表,文房四宝之一,宣纸“始于唐代,产于泾县”,迄今已有1500余年历史,其质地绵韧、光洁如玉、吸水润墨、不蛀不腐,用它绘制的书画,经数百年之久而质地依旧,被赞为“纸中之王”。千百年来,宣纸一直沿用古法造纸技术,详情>>

    2023-10-16
  • 平生自行化他,一心净土为归——记民国四大高僧之印光法师

    编者按:民国时期,佛门有四大高僧,分别为虚云法师、印光法师、弘一法师、太虚法师。四人之德高望重为海内外所公认,且皆以大半生之光阴操持苦修、传道布教。其功德无量,令世人传颂。民国四大高僧,皆有所长,派别各异:虚云法师历坐15个道场,重兴详情>>

    2023-10-16

历史解密 战史风云 野史秘闻 风云人物 文史百科

揭秘历史人物:芈姝的原型是谁?她的身份又是什么?

在许多电视剧和小说中,我们经常可以看到一个名叫“芈姝”的角色。她聪明、机智,善于权谋,深受观众喜爱。那么,历史上真的有这样一个人物吗?她的原型是谁?她的身份又是什么呢?本文将带您一探究竟。  一、芈姝的历史原型  经过查阅大量史书资料,详情>>

揭开霸气十足的元朝灭亡之后的蒙古人去向

元朝末代皇帝元顺帝妥欢帖睦尔既没有战死,也没有自杀,而是率领着王族和所剩的军队撤退到了自己祖先曾经兴起的故地——蒙古高原,在中国完成了一次外来政权全身而退的“奇迹”。 元朝的灭亡,只是使蒙古帝国失去了中国的领土,详情>>

将和相的区别(相与将的区别)

1、将、相这两个官职最大的区别就是它们一个是文官,一个是武官。其中丞相在很多朝代都是皇帝之下的最高行政官,是名副其实的“百官之长”。2、而将军则通常是指等级非常高的武官,他们是“一军之长”,通常都要率兵打仗、守土护疆。将、相这两个职位虽然在不同的朝代都有细微的详情>>

钟无艳是如何得到国王垂青的

中国作为四大文明古国唯一没有中断过的国家,历史是非常悠久的,这其中的历史事件、故事、人物和文化也是非常多,那么今天小编就为大家讲讲关于钟无艳是如何得到国王垂青的这一内容。钟无艳是如何得到国王垂青的根据《列女传》的记载,齐国宣王的妻子钟无艳(也叫钟离春或钟无盐)详情>>

长征中毛泽东挽救仅剩三万红军的重要会议

背景: 中央红军从湘江战役突围后,8.6万红军仅剩不足3万人。与湘西红二六军团会合的原计划被敌人识破,在去湘西的路上布下天罗地网,正等着红军去钻口袋。红军进入湖南后截获敌人电报,知道敌人在靖县,会同,绥宁北部等地布下三、四十万重兵,情况万分详情>>